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Abstract 

The progressive increase in number of components and electronic system demands the overall architecture 
to be developed in different scenario .In order to achieve optimum electronic systems, it is necessary to build many 
real devices and evaluate the performance of systems. However, it is also becoming necessary to build virtual 
devices because of the increasingly complicated and large-scale systems. So the physical level, connecting between 
functional level and implementation level, should also be applied to virtual development. On the other hand, not 
only the functions, but also the safety designs need virtual technology to apply fault injection.  

With increasingly sophisticated ECU development technologies, static simulators can no longer work with 
requisite testing requirements, so dynamic simulators are preferred. This progression with dynamic simulator will 
discusses the overall architecture of the system and the design decisions are made to reduce system cost. 

This paper also discusses a concept and a powerful tool, which allows a wide range of automatic tests to be 
performed on networked ECUs. More precisely, it represents a complex system for connecting and testing all the 
networked ECUs in a modern vehicle. 

Basically, testing is a vital and on-going part of the product development process, especially in the 
development of automotive systems. Validation testing of vehicle electrical systems and their computation is 
difficult and thus, expanding with the growth of certain features. Thus, a key to reduce test costs in increasingly 
complex systems is to work with the ability of the requisite distribution process in order to make every testable 
component in simpler manner.  
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Introduction  

As part of the push towards a lower-carbon 
society, electronic control systems for automobiles 
are developing and evolving from domain-specific 
control in the vehicle (power train, body, safety, etc.) 
to the integrated control of the entire vehicle. The 
ECU, which forms the backbone of such control 
systems are thus growing in scale and complexity. 
The development of ECUs in this changing 
environment requires having an overview of the 
entire electronic system at the planning stages; this 
overview would set out an optimized ECU  structure 
in which even the structure of the chipsets are 
defined; without such an overview, it will be difficult 
to keep up with vehicle requirements and 
specifications.  

As well, the more stringent design 
requirements for safety that straddle multiple systems 
are becoming difficult to achieve using the  
 
 

 
conventional single-system, single-ECU development 
approach. 

 
Figure 1: Process of ECU Development 
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Overview of Electronic System Development  
Based on the requirements from the vehicle 

product plan, an automotive electronic system obtains 
vehicle information (values from various sensors) 
directly or through a vehicle LAN, analyzes it, and 
then cooperates with other systems or gives feedback 
to a particular actuator. 
 

 Figure 2: Configuration of Software and Hardware 
Units 

 
Currently, to make the structure of the entire 

vehicle easier to understand, a block diagram 
simulators and other highly abstract theoretical 
models are used to develop architecture and to decide 
requirements for electronic systems.  

When functions are being allocated among 
the various ECUs, the software and hardware 
structure of the ECUs is not considered. 
In the following stage, the ECU development phase, 
the software and hardware allocation aspects of 
establishing system requirements is a major decision-
making step. In this stage, the performance of the 
electronic system is mostly decided, and is followed 
by the concrete implementation design.  

At the detailed design stage, the various 
constraints interact in complex ways. It is constraints 
in the system specifications and the constraints in the 
implementation. For example, a constraint in the 
system is to end processing within 1ms, a constraint 
in the implementation is to use a microcomputer. 

 

 
Figure 3: Linking Different Abstraction Levels. 

 
If these are not balanced for cost, it is 

necessary to continue improving both specifications 
until it is balanced. This is because as the 
development process moves downstream, the amount 
of information required increases; however large 
amounts of information becomes apparent for the 
first time downstream.  

In order to keep such coordination to the 
minimum, it is necessary to determine as much 
information at the upstream stages and to create a 
large-scale, detailed verification environment. 
 
Aims of Virtual Development  

Conventionally, optimizing systems and 
creating their architecture required fabricating large 
numbers of prototypes and evaluating them, but with 
their increasing scale, this method of optimization 
has become impractical. We therefore believe virtual 
manufacturing is a required step. As a function level 
simulator, a block diagram simulator is used, and as 
an implementation level simulator, SPICE is used 
today, these are both separate and independent 
development environments for the theoretical and 
implementation domains. Because of this, we will be 
working to introduce virtual development as a new 
physical level development environment to connect 
these domains.  

In terms of not only function but also design 
safety, one of the elements that are required of virtual 
development is the ability to inject failures that are 
difficult to recreate in an actual machine. Thus it was 
decided to use modeling technology based on System 
C, a language that can be used to rapidly run system 
level simulations while having the notion of time, in 
order to create the virtual development environment. 
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This ECU modeling technology is described in more 
detail below. 
 
Definitions of the Vehicle Electronic 
Architecture  

We considered in the electronic architecture 
a specific module to control the functions of the 
engine, which is responsible for capturing the electric 
signals of the sensors management, and also, the 
ideal amount of fuel to be injected on the exact 
moment, through the time of opening and closing of 
the injection valves. 

Another module is responsible for receiving 
the electronic signals of the foot pedal accelerator 
and also of other providing functions of the cabin, 
such as commands concerning engine brake, power 
take off, management of the sent or received 
information from the instrument cluster, and other 
ones. 

Besides, these modules can also interact 
with other existent ECU's in the electronic 
architecture responsible to manage specific functions 
of the vehicle, such as: brakes, maintenance, gearbox 
and retarders, doors control, Immobilizer among 
others. 

The following figures show two basic 
electronic architectures for commercial vehicles. The 
first of them displays a concept where the lines for 
diagnosis of faults and set of the parameters are made 
in an independent way, it means: each ECU possesses 
its own diagnosis line. 

 

 
Figure 4: General ECU Architecture 

 
In this kind of electronic architecture the 

Off-Board diagnosis equipment is responsible to 
address the messages for the ECU's through 
Instrument cluster diagnosis line. Therefore, the 
instrument cluster works like a "gateway for the 

diagnosis” receiving the information from Off-Board 
equipment and sending to the CAN BUS the 
communication data among the electronic modules. 
 
Definitions of the Diagnosis Concepts  

Currently, according to the country that the 
vehicle will be sold it is possible to use the SAE 
standard or ISO standard. Add to the protocols, are 
considered also the concepts to attend the 
maintenance of the vehicles in after sales. This is a 
very important point that should be analyzed because 
the conception of the electronic architecture happens 
before the procedures used to elaborate the diagnosis 
software that will be used in the workshops. 
In this phase of the vehicle development is defined all 
the components and systems concerning to the On-
Board and Off-Board diagnosis. Two topics will be 
examined: 
On-Board Diagnosis – Nowadays, using the 
technological resources, a lot of applications for On- 
Board diagnosis can be improved in the commercial 
vehicles, considering the information showed to the 
driver are important for maintenance or detailed 
information about the vehicle functioning. 

This screen can show all information that 
can turn better the vehicle conduction. A flexible 
service system can inform to the driver, through a 
display like this, the periods and kilometers values to 
change the normal wearing components of the truck, 
like: oil of the engine, oil of the gearbox and axles, 
brake components, filters, etc, depending of the 
conditions vehicle using. 
Off-Board diagnosis – It is essential to make a very 
clear selection between the information that must be 
showed through of the On-Board and Off-Board 
Diagnosis. At the On-Board system, the fundamental 
objective is the possibility to the driver to see the 
necessary information to perform the best way to 
drive the vehicle and to discover the faults that is 
happening with the electronic system and power 
train. 

In the Off-Board diagnosis system should be 
programmed all the necessary functions to do some 
changes in the ECU's and necessary information to 
perform a preventive and corrective maintenance of 
the vehicle in the workshop. Therefore, many 
diagnosis information require more technical 
knowledge.  

The development, build, validation and 
release of software now require a strategy that must 
include global 24-hour coordination and test 
capability. More software has to be built, tested then 
released and customers have even greater 
expectations of quality than ever before. 
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Having tools that fit into this new high efficiency 
environment that are globally accessible and quickly 
configurable for different applications are essential 
for success. New requirements have emerged, 
including test repeatability, inter-related dynamic 
signals, higher number of I/O signals in new ECU 
designs, and the ability to configure a single 
simulator for multiple ECU programs. 

This being the case, it is necessary to define 
an economical simulator solution that provided all of 
the features of the current static simulator including 
I/O and ease of use. This solution however would 
provide the advanced features that are now needed to 
develop and test ECU software in a corporation with 
distributed global engineering sites.  

To get the most value from the simulator it 
needed to be on the bench and easy to use by a wide 
variety of users. The simulators design must be 
robust with high Mean Time Before Failure (MTBF) 
numbers and also must take into account normal use 
errors such as I/O wiring mistakes so all I/O need to 
be able to handle short to battery and short to ground 
conditions. Suitable diagnostic software also needs to 
be running in the simulator to alert the user to any 
issues that may exist in the system in order to avoid 
ECU testing errors. Careful attention must be taken to 
the design of the simulator’s user interfaces, as 
technicians, hardware, systems and software 
engineers will all use the development bench 
simulator. Software testing requires the use of 
programming languages to create scripts and 
interfaces to other devices through Application 
Programming Interfaces (API’s) especially when 
white box testing. This however should not be the 
only interface, as that would discourage other users 
from interacting with the tool. A Graphical User 
Interface (GUI) is therefore also required to make the 
system easy to use by the other engineering 
competencies. 

The simulator, which uses a PC-based 
architecture to minimize costs, has specific I/O cards 
that can be easily reconfigured via software. 
Additionally, all simulator I/O cards were developed 
with a common FPGA communications core to 
reduce costs. This simulator also supports a wide 
array of commercially available PCI I/O cards for 
applications such as CAN, GPIB, IEEE1394, and 
other I/O needs. 

For many years, the development of new 
vehicles has been characterized by the ever 
increasing use of electronic control units (ECUs). As 
legislation on environmental protection is repeatedly 
stiffened, e.g., CARB’s OBD II standard, EOBD in 
Europe, mandatory reduction of fuel consumption, 
more and more complex engine controllers are 
required. Automatic gearboxes with new 

transmission concepts are also being increasingly 
used in medium-sized and compact cars. Electronic 
systems from the field of vehicle dynamics (ABS, 
ESP, ASR) are very often standard equipment in 
modern cars. 
 

 
Figure 5: Real-Time Simulation. 

 
Even for car body and convenience, ECUs 

have become indispensable. Thus many functions, 
e.g., seat movement, side view mirror movement, 
interior/exterior illumination, parking assistant and 
dashboard, are realized by means of ECUs. 
Implementing these complex functions is feasible 
only if the control units are interconnected via busses. 
This data bus networking of ECUs in the vehicle 
enables the sensor system, computed data, and the 
actuator system to be used jointly by a variety of 
functions. Typically, modern vehicle concepts consist 
of two or three different CAN networks. Particular 
ECUs, connected to more than one network, serve as 
gateways between the networks in these 
configurations. 

The ECUs have CAN controllers (nodes) 
and are distributed on two CAN networks. The low-
speed CAN network, the B-CAN, is connected to all 
body and comfort ECUs. The powertrain and vehicle 
dynamics ECUs are connected to the high-speed C-
CAN bus. The body computer forms the gateway 
between the two CAN networks. 

ECU manufacturers eliminate many errors 
during the project and development phases of the 
single ECUs. One of the standard tools, which have 
been widely used for years, is hardware-in-the-loop 
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technology. This particularly applies to all powertrain 
and vehicle dynamics ECUs. However, there are 
many other errors which cannot be detected without 
performing tests at integration and system level. This 
means that the complete system of networked ECUs 
must be tested.  
 
Importance of Testing  

Basically, the development of any product 
will require the verification of conformity to 
specifications and robustness in design. Testing 
allows the design engineer, test engineer or test 
technician to confirm that an ECU and/or system 
performs as intended. More specifically, it provides 
conformation that it can execute the functionality it 
was created to provide, and that it will successfully 
accomplish its task over its entire lifetime and 
through all conditions for which it was designed. 
Now, the manufacture of a high-volume product 
demands uniformity in order to ensure first-run 
quality over the entire production run, from start to 
finish. Generating first-run quality of a production 
line eliminates the costly inefficiencies arising from 
reworking products that are not quite correct as they 
come off the line, and scrapping products that can not 
be reworked economically. Testing is included within 
the manufacturing process for use in establishing and 
maintaining uniformity control in production. 
All development and production strategies basically, 
rely on testing for the feedback required to develop, 
produce and refine their products. Efficient 
development methodologies match testing scope and 
depth with the desired complexity and required 
robustness of the product in order to test the product 
optimally yet complete the test regime in a timely 
fashion. This process will maximize the test 
efficiency while minimizing the cost of the resources 
required. 

Also, efficient production strategies seek to 
employ as little testing as possible, for efficiency, in 
order to support the uniformity that is their target. 
Historically, the most effective of these rely on 
statistical process control (SPC) as the means for 
managing uniformity in production. It is 
methodologies that detect the scope and depth of 
testing to be used. 

 
Traditional Test Scenarios 

Validating ECUs - The process of validating 
automotive ECUs generally involves exercising their 
functional capabilities while attempting to place them 
under controlled conditions that accurately represent 
those they will encounter in the target production 
vehicle. In this way the device under test can be 
scrutinized scientifically in its ‘natural’ environment. 

For complex inputs and outputs like Exhaust Gas 
Oxygen (EGO) sensor inputs and fuel injector 
drivers, elaborate simulations of the corresponding 
production components are often used. However, to 
save money, test engineers have frequently attempted 
to use actual production components instead 
wherever possible. Invariably this sort of 
simplification results in a test that does not mimic the 
real world well, if for only one reason: it can not 
accurately represent the spectrum of variability 
encountered over the entire production run covering 
every part of the same design. 

Take the case of the very simplest of I/O, the 
digital input. Responding to the state of a signal that 
has only two possible values, set at perhaps +12V 
and Ground, it would appear that the application of 
these discrete voltages by any power supply would be 
sufficient to represent the equivalent signals 
generated for the ECUs use by something elsewhere 
in the vehicle. However, an old axiom has it that 
every digital problem reduces to an analog one when 
problems begin to appear in the vehicle. In other 
words, even simple digital inputs have analog aspects 
that must be considered and accounted for. 
Expanding this case to each input or output on each 
ECU in the vehicle highlights the degree to which 
test systems must be designed in order to avoid 
missing a failure. The only certain method for 
minimizing the needs for this level of detail is the 
reduction of I/O counts themselves. 

 Validating systems -Historically ECU 
validation and systems validation have been treated 
as one and the same in the automotive world. This is 
because each new system added to a vehicle has 
usually been built upon a single, and intimately 
related, ECU at its heart. Engineers have found that 
each new feature proposed is most easily developed 
as a separate ‘overlay’ to the existing vehicle 
electrical design. Thus each is generally assigned a 
new ECU and added incrementally to the existing 
array of electronic features already fitted to its 
vehicle. This concept has worked well until recently 
because these new and independent systems have 
been developed, refined and put into production as 
self-contained, standalone solutions having a 
minimum of interaction with the remainder of the 
vehicle’s systems. Quite some time ago a more 
formal adoption of the concept of systems began to 
be emphasized, focused primarily at ensuring 
thorough consideration of the effects of the external 
components making up each system, as well as 
interaction with the other systems in the vehicle, in 
addition to the ECU itself. Prior the time detailed 
study and characterization of these external 
components and effects was frequently forgotten or 
unconsciously minimized by ECU-focused engineers. 
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These oversights have frequently led to unfortunate 
results, primarily because no ECU operates in a 
vacuum in the increasingly complex vehicles that are 
being designed and built. 

More recently, the systems approach has 
returned to prominence because a migration away 
from traditional discrete wiring is occurring. The 
migration first introduced, and then facilitated the 
expansion of, computer style networking in vehicles. 
This type of networking, originally called multiplex 
wiring, was first introduced as a means of reducing 
I/O, more specifically those inputs and outputs used 
as interconnects between ECUs. In practice it has 
resulted in a corresponding reduction in wiring cost, 
and so its use has been expanded dramatically over 
the last several years. Successful implementation of 
in-vehicle networking requires a systems focus 
because it raises the level of interdependency 
between ECUs on the vehicle. 
As a result of the emergence and recent 
reinvigoration of the systems focus, and the clear 
need to test ECUs as part of the system to which they 
belong, more often than not, the validation of an ECU 
must go hand in hand with the validation of the 
system in which it resides. 
 
Test Strategies 

Of all design, development and 
manufacturing tasks, testing is perhaps most critical 
because of its ability to confirm the successful 
transfer of theory into practice. For this reason it is 
conducted periodically throughout the process of 
designing, releasing and manufacturing a vehicle 
from start to finish. During the early part of the 
design effort testing usually involves the simple 
confirmation that desired outcomes result when 
designs are run through their operating regimes. 
These early tests are very frequently ad hoc, 
informal, and not usually conducted according to a 
detailed time line. 

The first formal testing event in most 
development programs occurs when the entire design 
is completed. At this point design verification (DV) 
tests are created and conducted to a detailed formal 
plan established prior to beginning the development 
process 

.  
Figure 6: Vehicle Simulation Test Environment 

 
The second formal testing event occurs with 

the startup of production. Process validation tests 
confirm the ability of the manufacturing process to 
meet its target production goals. This is essential to 
the establishment of a controlled production 
environment. Since many aspects of the design of 
ECUs and electrical/electronic components have an 
effect on manufacturability, this test set also provides 
feedback on the design process. 

The process validation test suite is also 
important for the maintenance of the controlled 
production process after startup. In today’s 
quality/cost-conscious environment, some production 
processes employ statistical process control as the 
means for managing the production process, and 
ensuring controlled production, in a cost-conscious 
fashion. The initial process validation suite is used to 
validate every ECU prior to and concurrent with 
startup. Afterward statistical process control allows 
it, or the relevant portions of it, to be applied to 
samples drawn at random from the production stream 
according to a pre-established plan, rather than 
testing every part. This reduces test expenses 
significantly, while simultaneously ensuring 
optimized quality. 

Another formal testing event is known by 
the generic term ‘End-of-Line’ (EOL). End-of-Line 
tests are usually part of a 100% inspection program. 
By definition 100% inspection is at odds with the 
premise within statistical process control that only 
random samples of production output need to be 
tested to verify conformance to specification in a 
well-controlled production process. Thus, the 
existence of EOL testing is an admission that SPC is 
very difficult or even impossible to successfully carry 
out with some products. 
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Of the thousands of parts that make up a typical 
vehicle, experience has proven that ECUs exhibit this 
characteristic most often. As a result of the receipt of 
too many bad ECUs, i.e. those that made it past their 
respective production screening systems without 
being detected, OEMs frequently mandate EOL 
testing for most of the electronic components they 
buy. It is particularly true for complex ECUs that 
their inherent complexity makes it difficult for their 
manufacturing processes to hold all of their 
characteristics in control using SPC or by any other 
means. 
 
Common types of Test Systems 

The ad hoc testing that is conducted during 
the earliest stages of a development program is a 
special case in which test equipment is generally not 
considered a system but more of a collection of 
independent items, brought together temporarily by 
the design engineer to serve the purpose. Historically, 
little automation has been used. This reinforces the 
idea that ad hoc testing is not formal. Unfortunately, 
it also can lead to the incorrect assumption that it is 
not important as well. 

DV testing is generally the first testing 
conducted within a development program to benefit 
from the construction and use of a formal test system. 
The main advantage of the introduction of formality 
is repeatability, ensuring consistent results that the 
engineer can trust. In recent years DV systems have 
come to be increasingly automated, in order to 
improve throughput as well as to ensure repeatability. 
PV testing is a manufacturing development process 
intended to examine the variability of the produced 
parts, and not necessarily the robustness of the basic 
design. Although most are developed independently, 
some PV tests systems are built directly upon the DV 
testers that immediately precede them in the 
development chain. Similar in construction to DV 
testers, PV testers feature additional capabilities 
necessary for tracking and comparing key 
characteristic and unit-to-unit parametric 
measurements statistically. 

EOL test systems have many of the 
characteristics of PV systems, and in many instances 
are actually the PV systems themselves. The 
difference is primarily one of the perceptions. PV is 
the predominant term for production lines run by 
SPC, while EOL generally applies for lines run with 
100% inspection of all parts produced. 

The construction of dedicated automated test 
systems for use in ad hoc testing has generally been 
considered too expensive for widespread application. 
As with DV, PV and EOL testers, ad hoc testers are 
generally very expensive because of the custom 

requirements of the test suite. However it is also true 
that these requirements are sometimes less custom 
than in the test systems found further downstream. 
Next, over the years several attempts have been made 
at the design and marketing of generic automated test 
tools for ad hoc testing use, some better suited than 
others for this type of work. 

 
Simulator Architecture and Design 

The simulator was designed in a modular fashion 
to meet the above requirements. This modularity 
provides the user with several advantages. 
• The user can configure the simulator to match 

the needs of the application under test. If 
additional resources are needed the user only has 
to add an additional I/O module. 

• In the event that a module malfunctions the user 
can resolve the issue by replacing only the 
module that was affected, limiting down time. 

• This modularity extends to the simulator’s 
processor board, which is a standard PC, ATX 
motherboard. 

• The simulator is controlled by a model running 
on a standard PC motherboard, which controls 
the simulator via the Base module. The Base 
Module is the communications hub that 
distributes the model’s commands to all of the 
other modules in the chassis. 

I n addition to being the communications hub 
for the simulator the Base module also performs 
power moding for the system. 

This guarantees consistency of the rising and 
falling edges of the power-moded signals across all 
modules. All modules are update in each frame of the 
model and the changes are clocked in at the end of 
the model’s frame. 

 
Figure 7: ECU Architecture Design 
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The simulator GUI provides a 
comprehensive, front-end for all simulator specific 
functionality as well as all adjacent enabling 
software: The simulators software, that runs on a 
Windows based host PC, is the interface that is used 
to view and control activity on the simulator. Using 
this interface the user can configure the I/O, select 
user defined display panels, assign I/O to the display 
panels, run scripts, and monitor and control simulator 
operation. 
1. Configuring I/O - The user is able to configure 

the hardware and software settings for each 
module in the chassis via the GUI allowing each 
user or application can have its own 
configuration settings. 

2. Display Panels - The panels used for monitoring 
and controlling the operation of the simulator are 
created using a commercially available graphical 
programming language software package. Every 
user can choose to design their own panels or 
they can reuse existing panels that were created 
for other applications. The software comes with 
generic panels that the user can use to get started. 

3. Assigning I/O - All of the I/O for each module is 
presented to the user in a tree structure in the 
GUI. The user is able to assign any of these I/O 
to GUI control or display widgets on the panel 
enabling them to create customized interfaces. 
The user can then assign a name or alias to any 
of these I/O. This allows the user to see names 
that they will recognize and are common for like 
applications assigned to widgets on the display 
panel and in scripts. 

4. Running Scripts - The GUI provides a control 
dialog for the creation, editing, running, and 
controlling of scripts. Scripts have the capability 
to set or monitor any of the I/O that is available 
on the simulator. Signals that have been aliased 
by the user can be accessed using their alias 
names. This means that the script references 
signals by the same names that are used on the 
display panels. 

5. Monitor and Control - Once the simulator has 
been configured the user can monitor and control 
operation through the simulator GUI. In addition 
to the display panel widgets the user can use 
scripts, the Tactile Interface Module, or the API 
to monitor and control simulator operation.= 

To minimize software cost per-unit, the 
simulator command and control station can utilize a 
scalable software set. For licensing purposes this 
software can be designated as either a development 
node, or a runtime node, or possibly an intermediate 
node. A development node would have the capability 
to edit models (using an appropriate modeling tool 
license), compile them, and create new GUI panels, 

in addition to all run-time capabilities. A run-time 
user would only have simulator configuration and 
control capabilities, without any additional software 
licensing costs. Under many deployment conditions, 
the number of runtime users greatly exceeds the 
number of development users. 

 
I/O Configuration and Management 

The simulator’s configuration management 
process handles both the hardware and software 
configuration information for the system. Each user 
has the ability to create a configuration specific to 
their needs. The hardware configuration ensures that 
all of the modules needed for the applications are 
present in the chassis and that the correct cables are 
hooked up to each module. Due to the plug and play 
operation the order of the modules in the chassis are 
unimportant only their presence is important. These 
are used to determine that the correct cable is 
attached to the simulator and that the cable is hooked 
up to the correct modules for the device under test. 
 

 
 

Figure 8: I/O Management 
 

The software configuration ensures that the 
system has all of the files that are needed to boot the 
system. This includes all of the display panels, 
scripts, GUI configuration information and so on. 
The user has the ability to pack all this information 
into a single file for archive purposes or to send it to 
another user for sharing purposes. 

Interfacing the simulators I/O modules into 
the chassis is a simple plug-and-play procedure. The 
simulator GUI automatically detects the type of card 
(if any) located in each I/O slot in the chassis during 
initialization. Through the GUI, an engineer can 
customize the signals range/scaling, voltage rails, 
channel configuration etc. 
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ECU Modeling Technology 
ECU Modeling Concepts - 

Before modeling, it is necessary to clearly 
set out how the virtual development is to be applied. 
First, in physical level design, it is important to 
determine how to structure the microcomputer, 
software, and peripheral LSI. Secondly, to validate 
whether safety requirement for ECU is satisfied, the 
following are required, 
1. The optimized allocation of hardware and 
software. 
2. Estimating the CPU processing load for the 
software to be installed. 
3. Performing failure simulations. 

Requirement 1 exists because of the need to 
devise a structure that satisfies the system 
requirements before the hardware or software even 
exists. Requirement 2 exists because of the need to 
have the software to be installed as well as a highly 
accurate CPU model. Requirement 3 exists because 
of the need for a way to inject failures and to perform 
simulations on the system as a whole. Though the 
models that would be used to meet requirements 1 to 
3 all need different levels of abstraction(1), we 
believe that it is possible to come close to connecting 
these models with differing levels of abstraction in 
what is practically a single virtual environment. 

Creating models of the interaction between 
ECUs, as well as the overall activity of the various 
sensors, control units (ECUs), and actuators being 
controlled will allow us to review the software and 
hardware structure and to calculate the CPU 
processing. Because the objective of the modeling is 
not only to recreate the overall behavior but to also 
have the notion of time, System C was used in all of 
the hardware models. 
 

 
 

Figure 9: Process Flow of ECU Development. 

 
Modeling Components - 

Based on the existing system structure, we 
modeled each functional block including the AD 
converters in the ICs as well as the microcomputer 
peripherals such as the drive circuits and digital 
filters. This allows not only the overall activity to be 
observed but also the detailed behavior of each block. 
The microcomputer manufacturer provided the model 
of the microcomputer core, and this model was 
connected to the other models. The model of the 
microcomputer core is a cycle-accurate ISS model. 
By doing so, Requirement 1 (layout and review of 
hardware and software) and Requirement 2 
(calculating the CPU processing load) are satisfied.  

However, because having everything at a 
detailed level of abstraction results in the 
disadvantage of increased simulation time, the 
behavior in the models is investigated making 
strategic use (2) of transaction level and pin level 
interfaces between models to adjust the abstraction 
based on whether or not a block is under detailed 
review. This allows the total number of runtime 
events in the simulation to be decreased in order to 
create an environment in which large scale systems 
can be run at high speeds.  

 
Figure 10: Interconnecting ECUs with Peripherals. 
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Figure 11: Pin-level and Transaction-level Interface. 

 
When it considers how to model 32-bit 

communication line, transaction level interface is for 
verifying overall operation, and pin level interface is 
for verifying communication method. These are 
different abstractions. The degree of abstraction is 
frame-based for the first type and bit-based for the 
second type, and the simulation process has a single 
event for the first type and 32 events for the second 
type.  

The disadvantage for the first type that bit 
errors during transmission cannot be simulated, and 
for the second is that the simulation takes too long. It 
was for these reasons that we developed a modeling 
method that maintained the advantages of both and 
resolved their disadvantages. The method is to add a 
switching event between transaction level and pin 
level modeling so as to enable dynamic switching. 
This reduced the overall simulation time, while still 
allowing performing detailed verifications. 
 
Devising Failure Models - 

Up until now, the modeling of functions has 
been discussed. However, there are advantages to a 
virtual development environment when designing 
safety into the system and when there is the need to 
ensure the completeness of fail safes for different 
types of failures. The operation of the entire system 
can be verified before manufacturing, and even after 
manufacturing, failures can be injected with accurate 
timing in the desired location without physically 
dismantling the system, resulting in the improved 
ability to control and observe failures. 

To inject these failures, the failure modes 
were first analyzed. The results of this analysis 
revealed that failures can occur in various locations 
including physical connections and gates inside ICs, 
but all of these failures can be classified into a few 
modes such as disconnection and locking. Another 

issue is the location to inject these failures and how 
to inject these failures. Because the locations were 
failures can be observed in an actual machine are at 
its various terminals, a failure model was laid over 
the functional model as shown in Fig. 6, and the 
failures were defined in the output (a GND short 
failure is shown), which forces the system to treat the 
data transferred as abnormal values; this simplifies 
the failure model and makes failure injection easier, 
all without making any changes to the functional 
model. 

The final issue is the timing of the failure. 
The failure model added above was given a failure 
changeover signal as an input with the value and time 
of occurrence set in the initial settings; 
 

 
Figure 12: Failure model. 

 
because such failures can be analyzed in the same 
way as a regular simulation, it is easy to express not 
only steady-state failures but also transient failures, 
and we were able to use this method to verify design 
safety. 
 
ECU’S Development: Functionality and Diagnosis  

For the ECU development should be 
considered the communication system that it will be 
used in the electronic architecture of the vehicle. In 
this way, the new ECU's should be based on common 
platforms to perform the data communication and the 
interface with another ECU's. A reference if this 
concept is the OSEK system (Open systems and their 
interfaces for electronics in the vehicle). 

Many well-known European vehicle 
manufacturers and suppliers have joined up forming 
an international consortium under the name ‘OSEK’, 
which aims to introduce extensive standardization of 
software components. This mainly involves 
administrative mechanisms that create an 
environment for the actual application software to run 
in. These administrative functions fulfill practically 
identical tasks that are fundamental and consequently 
valid for all systems. 
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Figure 13: ECU Functionality 
 

 
Figure 14: ECU Configuration 

 
This operating system is a real-time multi-

tasking operating system that is specially adapted to 
the conditions in motor vehicles. Particular emphasis 
is placed on the low memory and computing time 
required. 

The OSEK communications unit governs the 
data exchange within a control unit and between 
different control units, regardless of the organization 
of the data bus system used. The network 
management sets the application bus system in 
operation, and permanently monitors all control units 
in the network. 

The implementation of OSEK offers the 
following advantages when compared to the 

traditional development methods for control unit 
software, 
• Improves quality: standardizing the basic software 
leads to higher quality, as modules that we have 
already been tested are used. 
• Easier maintenance: the high level of modularity 
makes software maintenance easier. 
• Re-usability: already tried-and-tested modules can 
be stored in libraries and used again. 
• Easier to integrate: application modules, which are 
developed by different companies, can be linked 
together or available modules integrated into a new 
project more simply. 
• Inter-changeable: modules form different 
companies with identical functions can be inter-
changed. 
 
Developing the Diagnosis Software 

After the electronic and electrical 
architecture of the vehicle are defined by the 
development area, the after sales department starts 
the development of the diagnosis software (DAS) 
which will be used by the workshop network to fix 
the problems in the electronic systems built in the 
vehicle and also adapt them to the customer needs. 
 

 
Figure 15: ECU in different work environment 

 
The diagnosis software (DAS) is based on 

decision trees that provides a complete test and work 
procedure. Installation points and detailed wiring 
diagrams can be viewed during each procedure. 

Realizing the Communication – It is 
necessary to be sure that it is possible realize the 
communication between DAS and the ECU. 

To transmit the data from the ECU, the data 
from CAL layer has to be interpreted correctly. 
Creating single source files ensures it. The author has 
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the possibility to create it manually or through a 
specific application. 

Creating single source documents – Single 
source documents are SGML documents “called” in 
decision trees (i.e. decision trees make reference to 
them) containing the following information: 
• ECU parameters 
• Fault codes 
• Environment data 
• Coding fragments 
 
This application to create single source documents is 
available for all the authors via Intranet. 
 

 
 

Figure 16: Communication Configuration window 
 
Self Diagnosis Software 

The ECUs are programmed with self-
diagnosis software (on-board diagnosis), which 
allows management of the faults arising in the plant 
to be controlled (i.e. engine, transmission, etc.). In 
addition, the ECU passes the descriptive and 
standardized diagnosis trouble code (DTC) of the 
detected faults to diagnostic communication software 
via K-line or via CAN bus. Fault detection and the 
DTC management are specified by the European On 
Board Diagnosis (EOBD) standards in Europe and 
the California Air Resources Board (CARB, OBD II) 
in the US. These rules have been included and 
extended in the self-diagnosis specification (SDS). 
 
DTC with the Basic OBD Structure 
• Drive into specified operating point 
• Activate electrical\logical\model fault 
• Read out ECU diagnostic memory 
• Evaluate test by comparing the detected fault 

with the expected fault 

• Generate report automatically has been improved 
to include the EOBD test concepts. 

 
Dynamic Software Verification 

The focus of the simulation techniques 
covered to this point has treated the ECU as a black 
box – namely monitoring the I/O signals entering and 
exiting the ECU. 
It is also often beneficial to monitor the state of 
measurement and calibration variables within the 
ECU during a simulation.  
This provides the system with enhanced capabilities 
to perform validation, configuration control, 
calibration, and performance analysis including the 
following items. 

• Setting an ECU input and checking the state 
in ECU memory 

• Monitoring diagnostics and fault codes 
• Uploading learn tables 
• �Adjusting calibrations 
• Checking ECU software IDs for 

configuration control 
 
Testing ECU Networks 
Conventional Test Methods   

Before the first vehicles prototypes are 
available, tests on ECUs (hardware and software) and 
other electrical components are performed on static 
benches that comprise the networked ECUs, the 
actual wiring harness and some of the sensors and 
actuators, i.e., the dashboard, the electrical motors of 
the seats, the control switches, etc. 

These benches are normally used to test 
electrical actuators, simple sensors, and wiring 
harness, and to perform functional tests on the car 
body electronics and the self-diagnosis software. The 
network management, gateway functionality and 
CAN physical level are also tested. In order to 
perform these tests, breakout boxes are added to 
introduce electrical faults, power supplies are used to 
generate ground shift presence and some tools for 
CAN network and diagnostic lines analyses are used. 

During vehicle development, the individual 
components are gradually replaced by prototypes that 
have previously undergone thorough testing. Tests 
are performed manually, so they are not fully 
reproducible and automatic test report generation is 
not possible. 

The user’s requirements for the test system 
are described below. They are fairly representative of 
other test systems for networked ECUs: 
• All pertinent ECU power drivers and signal 

outputs must be read in by the test system. It 
must be possible to capture the signals and store 
them in files if required. 
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• The test system must be able to stimulate all the 
ECU inputs. 

• Real electrical fault insertion capability is 
required on ECU outputs in order to verify how 
the system reacts to the insertion of known 
faults. For ECU inputs, electrical faults can often 
be stimulated by software. 

• The test system must be able to log all CAN 
messages between the ECUs. To investigate the 
behavior of the CAN network, the test system 
must be able to perform the following tasks, 
1. Manage standard and extended identifier 
messages. 
2. Trace and record on all of the CAN lines 
simultaneously with time stamps. 
3. Send predefined messages interactively. 
4. Generate triggers on start of frame for detailed 
analysis. 

 
Figure 17: Data Communication with ECU. 

 
5. Measure the time elapsed between a certain 
message with identifier “x” and a message with 
identifier “y”. 
6. Simulate the messages received and 
transmitted by nonexistent nodes and react to 
external triggers (events) or to events on CAN 
lines. 
7. Suppress all CAN messages sent by one or 
more ECU. 
8. Modify specific signals inside CAN messages 
and if necessary calculate a new checksum. 
9. Generate hardware errors on the CAN bus 
(e.g., by inserting additional capacitors or 
resistors between the CAN lines, generating error 
frames, destroying CAN messages at arbitrary 
bit positions). 

• It must be possible to verify network 
management functionality: sleep mode, alive 
mode, and wake up mode. 

• A diagnostic serial line is available on many of 
the ECUs constituting the test system. During 
test execution, it is necessary to interface the 
ECUs through this line to request diagnostic 
services and get diagnostic responses from the 
ECUs. In this particular case, the ability to 
interface to the ISO9141 serial line is required. 

• Diagnostic communication protocols must be 
implemented based on this layer. 

• From the ECU’s point of view, the test system 
must behave like a real car. This requires real 
time capable models of all controlled systems, 
especially for the engine, transmission, vehicle 
dynamics and some of the body/comfort 
components. 

• For manual interactive operation of the system, 
the experiment software must be powerful and 
flexible, but also easy to handle. The ability to 
automate the overall test system is crucial. For 
such a large system particularly, it is necessary to 
have powerful automation software with a well 
structured automation concept. 

 
Components of the Typical Test System 

Testing in its most basic terms consists of 
exercising the functionality of the device under test, 
conforming the conditions that are applied, 
measuring the resulting state of the ECU, comparing 
the results to a previous generated list of acceptable 
outcomes, and repeating this process for all functions. 

 
Figure 18: ECU interface 

 
Thus a key part of the process is the 

application of representative inputs, and the 
presentation of representative outputs, to the ECU in 
order to place it in a controlled state that accurately 
depicts the real-world conditions it will encounter in 
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use. Test engineers usually refer to these inputs and 
outputs generically as ‘loads’, and their 
consideration, design and construction is a key part of 
developing any test system. 

It is often tempting to use real sensors and 
actuators as loads. Following the line of thought that 
results in the acceptance of this logic, then it is 
logical to assume that test systems are simple to build 
and inherently accurate because they use real parts. 
However, in spite of being ‘real’, such parts can only 
substitute for one of a range of possible acceptable 
parts that could be used for the purpose. This is 
because all parts exhibit some variability. To be cost 
effective, ECU based systems are designed to 
accommodate this variability. In order to test most 
comprehensively this entire range must be traversed 
so as to ensure that all components in it, especially 
the ECU, can accommodate the variability. 

A more accurate, and recent, method for 
presenting a representative environment to an ECU 
under test involves synthesizing, or simulating, the 
characteristics of all loads wherever possible. 
Simulated loads have more flexibility and test the 
device under test more thoroughly be4cause they can 
be programmed to simulate a part whose 
characteristics fall anywhere in the range of 
variability the system is designed to accommodate. 
The added flexibility that results is accompanied by 
substantial additional complexity setup and control. 
For this reason these loads are almost set up and 
controlled by a computer. 

For this reason, along with several others, all 
modern test systems feature substantial computer 
controlled operation. Computers in testing are used to 
command loads to a particular configuration and also 
to command test instruments to conduct 
measurements. They are also ideal, however, for 
recording and analyzing the results, and particularly 
for having all of the above correctly with carefully 
controlled timing when called for. 

Most importantly, while humans can 
generally accomplish all of these same tasks, 
computers have excelled at conducting them 
repeatedly, time after time, test after test, part after 
part. This consistency has become critical to the 
process of finding problems quickly and easily when 
parts fail a test, hence saving valuable time and 
money. 

The last key part of a typical test system is 
the mechanism used to handle the connection of 
loads, measurement devices and power to the device 
under test. When an engineer sets up and runs an ad 
hoc test, all electrical connections required to conduct 
the specific test are usually made by hand, set up and 
broken down function by function as the test suite is 
run through its sequence. When a computer runs an 

identical test it needs a method for handling the 
electrical interconnects automatically, since it does 
not have hands with which to make and break 
connections. 

In modern test systems this task is usually 
assigned to an electro-mechanical mechanism called 
a switch matrix. Switch matrices allow fixed and 
costly loads and measurements assets to be 
selectively connected, broken down and reconnected 
to the I/O pins of the device under test by computer 
control. The term matrix has been applied because 
the mechanism consists of an array of switching 
relays, each of which can be activated independently, 
or with others in concert, to establish the electrical 
path between the test equipment and the device under 
test. The matrix, under command of the computer 
running the test, is responsible for setting up and 
breaking down every connection needed during the 
execution of the test suite. 

When comparing computer-controlled 
testing to that conducted by a human, the fact that the 
computer requires a switch matrix is the only 
nontrivial difference. While computers themselves 
are generally inexpensive and ubiquitous, giving 
them ’hands’ in the form of switch matrices amounts 
to additional cost. Historically this cost has generally 
been accepted because the speed and consistency 
advantages provided by computer control usually 
outweigh the cost of the matrix. 
 
Test Automation 

Test automation via scripting is essential if 
ECU testing is to keep up with developer’s needs. 
This task involves developing iterative, incremental 
test cases that can exercise an ECU through limitless 
test scenarios, and implementing those test cases in 
the supported scripting language.  
To guarantee real-time performance, the system 
allows test automation scripts to be downloaded and 
run directly on the real-time processor in the 
simulators chassis. Through this mechanism, outputs 
from a running simulation can be channeled to data 
files for post processing. 
 
Test Requirements 

The previous items concerning the DTC 
have been formalized in a flowchart that describes 
the steps to be performed. The steps have to be 
performed for each DTC (i.e., P0201), for each fault 
symptom (e.g., short to GND, short to battery) and 
for each test condition (detection rules), e.g., power-
on, cranking, engine run and vehicle run. 

When a DTC, a fault symptom and a detection 
rule have been defined, a generic test could be 
performed as follows, 
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• Fault insertion with the correct fault 
symptom 

• Check 
• Fault off 
• Check 
• Fault insertion with different fault symptom 
• Check 
• Fault off 
• Check. 

 
Closed Loop Simulation 

The simulators software suite contains a pre-
compiled open-loop model, which can be 
reconfigured via parameters through the GUI. This 
open-loop model is essentially a signal-mapping tool, 
allowing the engineer to easily assign any physical 
signal to any virtual (or physical via the TIM) control 
or display. 

Through the enabling software tools that are 
part of the simulators development suite it is possible 
to add a plant model to the simulation, and interface 
this plant with the physical I/O. This model 
integration is accomplished using Simulink, and the 
simulators software automates the compilation of the 
edited model into a real-time executable model. 
Using the simulator software provides an optimal 
path for test engineers to migrate from open loop 
testing to closed-loop testing on the same bench as 
testing needs continue to grow in complexity. 
 

 
Figure 19: ECU – Closed Loop Simulation. 

 
Another capability of the simulator software 

technology is distributed simulation. If the I/O count 
were to exceed the size of one chassis, their software 
automates the process of running the same simulation 
in parallel across two chassis. Similarly, if the 
compiled Simulink model were to grow in 
complexity to the point it could not be run at the 
desired step size, the model could be split into two 
smaller models and run on 2 processors in parallel. 
 

 
Figure 20: Closed Loop Simulation Process. 

 
Through this software the simulator has the 

flexibility to scale itself to both increasing model 
complexity and I/O count easily and with minimal 
cost. Since all targets use the same real-time 
operating system (QNX), it is easy to interface the 
simulator with other simulation nodes in other form 
factors to further minimize costs. 
 
Impact of In-Vehicle Networking 

Control networks, Messaging and Signal 
transport – Automotive networks generally are of the 
command-and-control type. Unlike home or business 
local area networking (LAN), or location-to-location 
wide area networking (WAN), they are not typically 
used to carry large data files, e-mail messages, or 
internet content within the vehicle. Instead, they 
handle small data transfers called ‘messages’, which 
are typically used to convey commands from one 
place in the vehicle to another or to retrieve 
measurements taken by ECUs or sensors. They have 
evolved out of a concept called multiplex wiring, 
which is the basic technique for using a single set of 
wires to carry multiple signals. 

The initial goal of multiplex wiring was the 
practical elimination of wires, interconnects, and 
harnesses through their replacement, where possible, 
by a vehicle data bus. This action altered the process 
of exchanging data between ECUs, between sensors 
and ECUs, or between ECUs and actuators. As a 
result, data exchange no longer consists of activating 
output pins and sending out digital or analog signals, 
but has evolved into a process of constructing 
messages containing representations of those signals 
and sending them out over the new vehicle network 
or data bus instead. However, as with networking 
elsewhere, substitution of a network for discrete 
wiring brings much more than cost savings on wiring. 
The data channel provided by the network supports 
many more opportunities for feature expansion, 
functional efficiency improvement, and systems cost 
savings than immediately meet the eye. 
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Figure 21: ECU Diagnostic and Calibration 

 
Control networks are beginning to make a 

significant impact on the electrical systems of most 
vehicles. With the expansion of in-vehicle 
networking a major shift in the topology of the 
typical electrical system is underway, one that will 
have a profound impact on the test process, and 
ultimately shape the cost and complexity of testing. 
Distributed I/O & Distributed functionality –  

The concept of in-vehicle networking has 
evolved substantially since multiplex wiring was first 
introduced. However, it has generally followed a path 
that has emphasized a controlled and deliberate 
rollout of practical applications rather than an 
unchecked explosion of theoretical capabilities. 
Sending signals over the bus eliminates dedicated I/O 
in a dramatic way as wires formerly dedicated to 
carrying them in traditional fashion are removed in 
favor of using the shared data bus. The bus has the 
effect of becoming a common pathway between 
devices, essentially allowing the small number of I/O 
dedicated to it to be reused over and over again. 

The next major step was the introduction of 
the concept of distributed I/O. after implementing the 
first multiplex wiring systems engineers determined 
quickly that vehicle data buses could facilitate, at the 
system level, much more than simple 
communications between ECUs and components. 
They discovered that it has possible to use data buses 
to fundamentally alter the topology of the vehicle’s 
electrical system, placing inputs physically near the 
sensors and input devices they connect to, and 
outputs adjacent to the actuators and output devices 
they drive. 

The process of generating electrical systems 
with distributed I/O in this fashion is typically called 
geographical partitioning. I/O is moved from a 
centralized controller to a location in the vehicle 
much closer to the loads being queried or driven. 

This action has the effect of dramatically reducing 
wire harness length and makes the most sense 
currently in body and chassis control systems where 
functionality is exercised frequently across large 
areas of the vehicle. 

At this point in time, given the introduction 
of more sophisticated data buses in vehicles, the 
concept is transitioning into the last major step in its 
evolution, distributed functionality. It expands the 
concepts behind distributed I/O by partitioning 
functionality as well as I/O geographically. This step 
involves widespread streamlining of existing vehicle 
functionality and the addition of new features and 
functions by splitting up the responsibility for these 
functions between ECUs. 

 
Figure 22: ECU Synchronisation 

Taken to its extreme, this process facilitates 
the long-sought concept of smart sensors and smart 
actuators. Both feature traditional sensors and/or 
actuators fitted with at least some measure of 
functional control. Rather than placing this control in 
a separate ECU, smart devices split it up among 
themselves, reducing system complexity through the 
elimination of centralized ECUs. Distributed I/O is 
critical to accommodating the increasing numbers of 
I/O required to support the newest feature being 
added to vehicles, hence the concept of reducing test 
cost and complexity due to I/O expansion. 
Distributed complexity is critical to reducing ECU 
complexity, leading to the reduction of test 
complexity and the elimination of non-value added 
costs resulting from what is essentially over testing. 
Reduction of cost complexity and cost: 

Since the costs are a significant percentage 
of the cost of developing and producing electrical 
systems, the reduction in test-costs that occurs from 
transition to distributed systems is worth considering 
in detail. The key to reducing test costs in 
increasingly complex systems is to exploit the ability 
of the distribution process to make each of the 
testable components in the system simpler. 

Simpler systems are easier to test because 
they have fewer characteristics to monitor. While the 
total number of characteristics for a given system will 
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not change substantially in the transition from fully 
centralized to full distributed, there will be significant 
reassignment from ECUs to smart components, and 
from discrete I/O to signals embedded in messages 
sent across the network. This phenomenon will result 
in a reduction of testing complexity and cost overall 
for two reasons, 

1. Cost of testing to support quality –  
The inherent complexity of most ECUs, especially 
those with high I/O counts, makes it difficult if not 
impossible to successfully implement SPC in their 
production processes. This leaves costly 100% 
inspection as the only means of guaranteeing quality 
in those processes. By eliminating complex ECUs the 
simpler components that remain become excellent 
candidates for SPC and its inherent cost savings, 
because there are fewer key characteristics to monitor 
for each one. 

2. Core Cost of Automated Testing –  
Systems that use an In-Vehicle Network extensively 
has fewer traditional I/O, in many cases dramatically 
fewer. These systems are much less costly to test than 
those interfacing via many individual wires, because 
of the opportunity to use smaller, less costly switch 
matrices instead of larger, more expensive ones. The 
cost of switch matrices quadruples (approximately) 
for each input added, because each new input must be 
switched across all outputs, not just one 
corresponding new one. Additional costs not related 
to testing are also saved, for instance the cost of the 
complex I/O drivers inside ECUs used to handle the 
interface to individual wires, but these are outside the 
realm of testing. 
 
Conclusion 

Here, we believe that maximizing the 
performance of ECUs in electronic systems, which 
continue to grow in scale and complexity, and 
ensuring that these systems meet design safety 
requirements will require methods to visualize things 
that are difficult to visualize, and that this 
visualization is needed both before and after 
manufacturing. We would like to use the modeling 
technology described in this paper as a base for 
creating a virtual development environment and to 
carry out the development of vehicle electronic 
systems and products that contribute to society. 

The simulation process provides the 
capabilities to replace the static simulator used for 
automotive ECU development and provides the 
advanced features desired by development 
community. 

Many new ways of developing and testing 
ECUs and their functionality are discussed. These 
will provide a reduction in test execution time, 

reliability of tests due to repeatability of internal and 
external conditions. This will also provide the ability 
to perform more exhaustive tests by modifying the 
test conditions. 

Also all the information related to diagnosis 
is available on the same software, which results in 
decreased run-time and other search efforts. This also 
results in decreased vehicle a downtime and service 
time that increases customer satisfaction. 

Reduction in the cost of testing with 
increased distribution can be resulted in the necessary 
change which is helpful in many other ways to work 
with these distributed systems, along with the test 
benefits. 
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